A Study on the Real Time Strain Measurement System for Analysis of Strain Evolution and Failure Behavior of Cortical Bone Materials
نویسندگان
چکیده
The understanding of the mechanical properties of bone is important to the understanding of bone repair. Previous studies have focused on macroscopic failure of bone material but have failed to provide evidence of strain evolution during mechanical testing. In this present study, we performed compression tests on lamb femurs to understand the failure mechanisms and the real time strain evolution in bones during compression testing. We examined the strain distribution patterns in specimen tested at three different strain rates and have also varied the specimen length to identify the effects of specimen length and strain rates during compression. The study has shown that the specimen lengths and loading rates have a significant effect on the failure behavior and strain distribution in bones.
منابع مشابه
مقایسه اثر مواد مختلف سازنده ساختار فلزی روکش بر توزیع تنش پیرامون ایمپلنت با آنالیز اجزاء محدود سه بعدی
Objectives: Despite the high success rate, implant-supported prostheses fail in some cases. Control of the applied forces is an important factor determining the success or failure of implants. Complete understanding of the biomechanical principles in implant-supported prostheses is necessary for offering an appropriate custom-made treatment plan for each patient and reducing the risk of functio...
متن کاملNumerical Study of the Effect of Materials’ Plastic Behavior on Equibiaxial Residual Stress Measurement Using Indentation
Indentation is a new method for estimating residual stress. The plastic behavior of the materials under study can affect indentation parameters and, thus, influences the results of residual stress measurement. In this paper, the effect of yield stress and work-hardening exponent on the accuracy of residual stress measurements in steels and aluminums was studied. Results showed that, for m...
متن کاملEffect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis
Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...
متن کاملEvaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements
Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD) treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the ...
متن کاملMechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کامل